Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the km Scale over a Semi-Arid Irrigated Agricultural Area

نویسندگان

  • Malik Bahir
  • Gilles Boulet
  • Albert Olioso
  • Vincent Rivalland
  • Belen Gallego-Elvira
  • Maria Mira
  • Julio César Rodriguez
  • Lionel Jarlan
  • Olivier Merlin
چکیده

Evapotranspiration (ET) estimates are particularly needed for monitoring the available water of arid lands. Remote sensing data offer the ideal spatial and temporal coverage needed by irrigation water management institutions to deal with increasing pressure on available water. Low spatial resolution (LR) products present strong advantages. They cover larger zones and are acquired more frequently than high spatial resolution (HR) products. Current sensors such as Moderate-Resolution Imaging Spectroradiometer (MODIS) offer a long record history. However, validation of ET products at LR remains a difficult task. In this context, the objective of this study is to evaluate scaling properties of ET fluxes obtained at high and low resolution by two commonly used Energy Balance models, the Surface Energy Balance System (SEBS) and the Two-Source Energy Balance model (TSEB). Both are forced by local meteorological observations and remote sensing data in Visible, Near Infra-Red and Thermal Infra-Red spectral domains. Remotely sensed data stem from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and MODIS sensors, respectively, resampled at 100 m and 1000 m resolutions. The study zone is a square area of 4 by 4 km2 located in a semi-arid irrigated agricultural zone in the northwest of Mexico. Wheat is the dominant crop, followed by maize and vegetables. The HR ASTER dataset includes seven dates between the 30 December 2007 and 13 May 2008 and the LR MODIS products were retrieved for the same overpasses. ET retrievals from HR ASTER products provided reference ET maps at LR once linearly aggregated at the km scale. The quality of this retrieval was assessed using eddy covariance data at seven locations within the 4 by 4 km2 square. To investigate the impact of input aggregation, we first compared to the reference dataset all fluxes obtained by running TSEB and SEBS models using ASTER reflectances and radiances previously aggregated at the km scale. Second, we compared to the same reference dataset all fluxes obtained with SEBS and TSEB models using MODIS data. LR fluxes obtained by both models driven by aggregated ASTER input data compared well with the reference simulations and illustrated the relatively good accuracy achieved using aggregated inputs (relative bias of about 3.5% for SEBS and decreased to less than 1% for TSEB). Results also showed that MODIS ET estimates compared well with the reference simulation (relative bias was down to about 2% for Remote Sens. 2017, 9, 1178; doi:10.3390/rs9111178 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 1178 2 of 27 SEBS and 3% for TSEB). Discrepancies were mainly related to fraction cover mapping for TSEB and to surface roughness length mapping for SEBS. This was consistent with the sensitivity analysis of those parameters previously published. To improve accuracy from LR estimates obtained using the 1 km surface temperature product provided by MODIS, we tested three statistical and one deterministic aggregation rules for the most sensible input parameter, the surface roughness length. The harmonic and geometric averages appeared to be the most accurate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions

[1] The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature data to a Two-Source-Model for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production region in central Iowa. The other lies within the Texas High Plains, an irrigated agricultural area. It is ...

متن کامل

Status and evaluation of the selected soil nutrients irrigated by unconventional water (Case study: Qom)

Population’s exponential growth along with drought has increased water resources limitation, especially in arid and semi-arid area. Therefore, the use of non-conventional water is an important tool for water resource management. If unconventional water has no negative impact on soil properties and water, it can be used for irrigation coupled with desertification projects. So, this paper tries t...

متن کامل

Status and evaluation of the selected soil nutrients irrigated by unconventional water (Case study: Qom)

Population’s exponential growth along with drought has increased water resources limitation, especially in arid and semi-arid area. Therefore, the use of non-conventional water is an important tool for water resource management. If unconventional water has no negative impact on soil properties and water, it can be used for irrigation coupled with desertification projects. So, this paper tries t...

متن کامل

برآورد تبخیر- تعرق مرجع در شرایط کمبود داده (مطالعه موردی: استان خراسان شمالی)

Quantitative evaluation of evapotranspiration on a regional scale is necessary for water resources management, crop production and environmental assessments in irrigated lands. In this study, in order to estimate ETo and because of few synoptic stations and also little recorded meteorological data in North Khorasan Province, Iran, with arid and semi-arid climate, 7 stations from neighboring pro...

متن کامل

Evaluation of meteorological, hydrological and groundwater resources indicators for drought monitoring and forecasting in a semi-arid climate

     Drought as a natural phenomenon characterized by a significant decrease of water availability during a period of time and over a large area. In recent years, droughts and its frequent in arid and semi-arid regions like Iran on the one hand, and water demand has been rising on the other hand and, as a result, their impacts are being aggravated. Therefore, the meteorological and hydrological...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017